Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons.
نویسندگان
چکیده
Addiction is believed to involve glutamate-dependent forms of synaptic plasticity that promote the formation of new habits focused on drug seeking. We used primary cultures of rat prefrontal cortex (PFC) neurons to explore mechanisms by which dopamine-releasing psychomotor stimulants such as cocaine and amphetamine influence synaptic plasticity, focusing on AMPA receptor trafficking because of its key role in long-term potentiation (LTP). Brief stimulation of D1 dopamine receptors increased surface expression of glutamate receptor 1 (GluR1)-containing AMPA receptors through a protein kinase A-dependent mechanism, by increasing their rate of externalization at extrasynaptic sites. Newly externalized GluR1 remained extrasynaptic under basal conditions but could be translocated into synapses by subsequent NMDA receptor activation. These results suggest that D1 receptors may facilitate LTP by increasing the AMPA receptor pool available for synaptic insertion. However, stimulation of D2 receptors decreased surface and synaptic GluR1 expression. These findings are discussed in the context of evidence that D1 and D2 receptors act independently rather than antagonistically in the intact PFC. D1 receptor facilitation of AMPA receptor synaptic insertion helps explain D1 receptor-dependent facilitation of LTP and learning in the normal brain. Abnormal engagement of this mechanism during unregulated dopamine release may account for maladaptive plasticity after repeated exposure to cocaine or amphetamine.
منابع مشابه
Acute and chronic dopamine receptor stimulation modulates AMPA receptor trafficking in nucleus accumbens neurons cocultured with prefrontal cortex neurons.
Postsynaptic interactions between dopamine (DA) and glutamate receptors in the nucleus accumbens (NAc) are critical for addiction. To determine the effect of acute and repeated DA receptor stimulation on AMPA receptor (AMPAR) synaptic targeting in medium spiny NAc neurons, we developed a model system consisting of rat NAc neurons cocultured with prefrontal cortex neurons from enhanced green flu...
متن کاملActivation of dopamine D4 receptors induces synaptic translocation of Ca2+/calmodulin-dependent protein kinase II in cultured prefrontal cortical neurons.
One of the important targets of dopamine D4 receptors in prefrontal cortex (PFC) is the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII). In the present study, we investigated the effect of D4 receptor activation on subcellular localization of CaMKII. We found that activation of D4 receptors, but not D2 receptors, induced a rapid translocation of alpha-CaMKII from cytosol to...
متن کاملPostnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration
Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...
متن کاملPostnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration
Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...
متن کاملDopamine alters AMPA receptor synaptic expression and subunit composition in dopamine neurons of the ventral tegmental area cultured with prefrontal cortex neurons.
Excitatory synapses onto dopamine (DA) neurons of the ventral tegmental area (VTA) represent a critical site of psychostimulant-induced synaptic plasticity. This plasticity involves alterations in synaptic strength through AMPA receptor (AMPAR) redistribution. Here, we report an in vitro model for studying regulation of AMPAR trafficking in DA neurons under control conditions and after elevatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 32 شماره
صفحات -
تاریخ انتشار 2005